12 research outputs found

    The impact of World University Rankings on BRICS students' choices of universities (the case of the Ural Federal University)

    Get PDF
    World rankings affect universities’ positions on the global education market. The survey (2017-2018, UrFU) of Chinese students (n = 20) and experts (n = 4) found that for students the quality of education and their parents’ / friends’ opinions were the key factors in their university choice. Experts believe, however, that the role of rankings will grow and that high ranking positions will be used by universities to attract investment and improve their status

    The Criterion for the Crystallization Ability Assessment as Applied to Borate Glass Powders and Monoliths

    No full text
    The glasses of three borate systems, Na2O-B2O3, K2O-B2O3 and BaO-B2O3, were studied over a wide range of the compositions by differential thermal analysis (DTA) and X-ray powder diffractometry (XRPD). The thermal parameters obtained by DTA method (the glass transition temperature, Tg, the crystallization onset temperature, Tx, and the melting temperature, Tm) were used to calculate the criteria (coefficients) characterizing glass stability against crystallization. The Lu–Liu, Weinberg and Hrubý coefficients were tested for verification of their consistency with several simple requirements. Since each of the criteria has its drawbacks, the coefficient of glass crystallization ability, Kcr, which meets all of the requirements, was also used. The advantage of this coefficient is demonstrated on the example of the glass powders and the monolithic glasses of the mentioned above borate systems

    Мотивация добровольных доноров спермы, принимающих участие в программах искусственного оплодотворения в Российской Федерации

    No full text
    This article explores the motivations behind Russian men’s altruistic sperm donation using Alderfer's Existence-Relatedness-Growth (ERG) model. Among the sample of 86 men, altru-istic motivation is mostly driven by existence and relatedness. Correlations tests indicated two patterns: 1) men driven by existence needs are more willing to maintain contact with the future child and less prone to self-promotion; 2) men driven by relatedness needs demon-strate the opposite characteristics. These results contribute to further research of reproductive donor motivations in Russia

    Effect of Synthetic Approaches and Sintering Additives upon Physicochemical and Electrophysical Properties of Solid Solutions in the System (CeO<sub>2</sub>)<sub>1−x</sub>(Nd<sub>2</sub>O<sub>3</sub>)<sub>x</sub> for Fuel Cell Electrolytes

    No full text
    Finely dispersed (CeO2)1−x(Nd2O3)x (x = 0.05, 0.10, 0.15, 0.20, 0.25) powders are synthesized via liquid-phase techniques based on the co-precipitation of hydroxides and co-crystallization of nitrates. The prepared powders are used to obtain ceramic materials comprising fluorite-like solid solutions with the coherent scattering region (CSR) of about 88 nm (upon annealing at 1300 °C) and open porosity in the range of 1–15%. The effect of the synthesis procedure and sintering additives (SiO2, ZnO) on physicochemical and electrophysical properties of the resulting ceramics is studied. The prepared materials are found to possess a predominantly ionic type of electric conductivity with ion transfer numbers ti = 0.96–0.71 in the temperature range of 300–700 °C. The conductivity in solid solutions follows a vacancy mechanism with σ700 °C = 0.48 × 10−2 S/cm. Physicochemical properties (density, open porosity, type and mechanism of electrical conductivity) of the obtained ceramic materials make them promising as solid oxide electrolytes for medium temperature fuel cells

    Synthesis and Investigation of Ceramic Materials for Medium-Temperature Solid Oxide Fuel Cells

    No full text
    Finely dispersed (СeO2)1-x(Sm2O3)x (x = 0.02; 0.05; 0.10); La1-xSrxNiO3, La1-xSrxCoO3 and La1-xSrxFe0.7Ni0.3O3 (x = 0.30; 0.40) mesoporous xerogel powders are synthesized by co-crystallization of the corresponding nitrates with ultrasonic processing and used to obtain nanoscale ceramic materials with cubic fluorite-like, orthorhombic, and perovskite-like tetragonal crystal structure, respectively, with CSR ∼ 64–81 nm (1300°C). Physicochemical characterization of the obtained ceramics revealed that (СeO2)1-x(Sm2O3)x features with open porosity 2–6%, while for La1-xSrxNiO3, La1-xSrxCoO3, and La1-xSrxFe0.7Ni0.3O3, this value is about 21–29%. Ceria-based materials possess a predominantly ionic conductivity (ion transport numbers ti = 0.82–0.71 in the temperature range 300–700°C, σ700°С = 1.3·10−2 S/cm) determined by the formation of mobile oxygen vacancies upon heterovalent substitution of Sm3+ for Се4+. For solid solutions based on lanthanum nickelate and cobaltite, a mixed electronic-ionic conductivity (σ700°С = 0.80·10−1 S/cm) with ion transport numbers (te = 0.98–0.90, ti = 0.02–0.10) was obtained. The obtained ceramic materials are shown to be promising as solid oxide electrolytes and electrodes for medium-temperature fuel cells

    Mechanical behavior and impact toughness of the ultrafine-grained Grade 5 Ti alloy processed by ECAP

    No full text
    This paper reports on a study of the relationship between microstructure, mechanical behavior and impact toughness of the UFG Grade 5 Ti alloy. The mechanical behavior and impact toughness of the Grade 5 Ti alloy in a coarse-grained state, and in an ultrafine-grained (UFG) state produced by equal-channel angular pressing (ECAP) with subsequent deformation-and-thermal treatments via extrusion and warm upsetting in isothermal conditions, were studied extensively. It is shown that a strong refinement of α-grains (less than 250 nm) in the alloy by ECAP and extrusion leads to high strength but with low values of the uniform elongation and lower impact toughness. It is demonstrated that, in order to increase the impact toughness of UFG Ti alloys, it is possible to use approaches realizing ductility enhancement associated with an increase of the strain hardening capacity. An enhancement in the impact toughness of the UFG alloy through an increase in the uniform tensile elongation of the sample is achieved by the preservation of the ultrafine size of α-grains (about 800 nm) with predominantly high-angle boundaries and a decrease in the dislocation density due to recovery and dynamic recrystallization during warm upsetting
    corecore